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Anesthesiologists are frequently confronted with
patients who are at risk for neurological complications
due to perioperative stroke or prior traumatic brain
injury. In this review, we address the growing and
fascinating body of data suggesting that gender and
sex steroids influence the outcome and optimal treat-
ment plan for these patients. Clinical evaluations of
neuroinjury and recovery mechanisms have resulted
in many of our current concepts of neuroprotection.
These concepts, however, must reflect new evidence
for complex sex-linked patterns in the epidemiology,
risk, and response to stroke, traumatic brain injury,
and epilepsy in women versus men. In fact, tantalizing
laboratory findings suggest that male and female cells
simply do not respond identically to death or survival
signals after injury. Furthermore, the presence or loss
of hormonal steroids, i.e., the estrogens, progestins,
and androgens, suppress or amplify innate gender-
based differences in physiology and pathobiology.
The purpose of this article is to: 1) review gender
differences in mechanisms and outcomes of brain
injury, 2) present evidence for the influence of sex
steroids in these sex-specific responses, and 3) delin-
eate implications for current and future perioperative
and intensive care.

ISCHEMIC BRAIN INJURY
Sex Matters in Ischemic Stroke

Male sex is an acknowledged risk factor for stroke;
and, in most international studies, ischemic stroke
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occurs more often in men than women. This sexually
dimorphic epidemiology appears to be present until
late in life, well beyond the menopausal years. When
female and male animals are evaluated side-by-side, a
male phenotype of “ischemic sensitivity” can be un-
covered. In a remarkable study of more than 2000
genetically hypertensive and stroke-prone rodents,
life expectancy was longer in the female than in the
male. In addition, evidence of cerebral hemorrhage
and vascular lesions was absent in females until an
advanced age." These early observations mimic human
epidemiology. Furthermore, outcome from ischemic
brain injury (IBI) is clearly sex-linked in genetically
nonspecific animal models. Female rats and mice of
many different inbred and outbred strains sustain
smaller tissue damage and enjoy improved functional
outcome compared with their male counterparts after an
equivalent insult from focal or global cerebral ischemia.

Similar sex-specificity can be modeled in cell cul-
tures grown without background sex steroids. Male
neurons, for example, are more susceptible than fe-
male cells to challenges from pharmacological insults
used to simulate brain injury, e.g., glutamate or per-
oxynitrite.” This differential sensitivity may be related
to a relative inability of male cells to maintain intra-
cellular glutathione levels after nitrosative stress. In
contrast, response to oxidants such as hydrogen per-
oxide is gender neutral.> These observations do not
appear to be limited to neurons. Cell death after
oxygen-glucose deprivation is less extensive in female
astrocytes® and in hippocampal slices from females.*
These findings suggest that sex-specific sensitivity to
cerebral ischemia is partly a function of the sex of cells.
However, hormonal influences should not be dis-
counted in our understanding of post-IBI cell death
and recovery.

Estrogen and IBl: What We Know From the Bench
Today, there is a large body of evidence suggesting
a protective effect of estrogen in a variety of experi-
mental models of stroke. Studies of focal as well as
global brain ischemia in various rodent models have
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consistently shown that female animals sustain less
tissue damage than males after similar insults.” ® This
beneficial effect of female gender is lost in reproduc-
tively senescent animals’ or after ovariectomy but can
be restored by estrogen supplementation.”” " Estro-
gen treatment proved similarly beneficial in male
animals.”** Although most of these animal studies
emphasized infarct size and cell loss early after the
insult, chronic estrogen supplementation also im-
proved functional outcome.'>*® The effects of chronic
estrogen exposure in these models may explain some
of the female advantage in IBI, and they are the focus
of recent studies in primary stroke prevention. How-
ever, since long-term treatment before a perioperative
brain insult is obviously not an option for neuropro-
tection, the efficacy of acute treatment with estrogen in
the perioperative setting at or after onset of ischemia
has also been tested in experimental ischemia and
found to reduce brain damage."”'® This benefit also
extends to male animals.'?

Researchers have invested considerable time and
effort to determine the mechanisms of estrogen pro-
tection. A profound understanding of these mecha-
nisms is required to develop drugs that mirror estrogen’s
neuroprotection without the undesirable hormonal
effects, particularly for male patients. Furthermore,
understanding how a patient’s hormonal profile may
affect brain injury in the perioperative phase will help
the clinical anesthesiologist design a more individual-
ized anesthetic regimen. Estrogen elicits a cascade of
cellular and subcellular actions that involve both
genomic and non-genomic mechanisms after an isch-
emic insult. These actions can 1) stabilize the blood—
brain barrier'® and subsequently reduce brain edema,®
2) dilate vasculature®' to increase cerebral blood
flow,*?** 3) suppress inflammation,'®*?* and 4)
upregulate cell-survival mediators.>>” In addition,
estrogen is an antioxidant that can prevent lipid
peroxidation.”*° N-methyl-p-aspartate (NMDA) recep-
tor activation may contribute to estrogen-mediated
1r1europro’cec’cion,31 but, at least in higher doses, estro-
gen can also directly inhibit NMDA receptors,®* ame-
liorating excitotoxicity. Recently, investigators also
recognized benefits provided by estrogen that extend
beyond acute injury and positively influence regenera-
tion and plasticity of new neurons after ischemia.*
This may contribute to the improved memory func-
tion outcome after ischemia that is seen in estrogen-
supplemented animals.*®

In classical estrogen signaling, 173-estradiol (E2), the
predominant human estrogen, binds to an estrogen recep-
tor (ER), usually ER-« or ER-$, which translocates to
the nucleus and binds to an estrogen-response ele-
ment (ERE) on the target gene to activate transcrip-
tion. Both ER-«a and ER-f3 are widely expressed under
physiologic conditions in all cell types throughout the
brain, i.e., neurons, glia, and endothelial cells, includ-
ing in ischemia-sensitive areas such as neocortex and
hippocampus.®* 7 Not surprisingly, concentrations of
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ER-a and ER-B are higher in adult females compared
with males.?® Transcriptional regulation of genes that
do not carry an ERE has also been described via
activation of a variety of non-ER transcription factors.
In addition to classical transcriptional gene activation,
E2 elicits non-transcriptional rapid signaling action,
possibly through interaction with membrane-bound
G-proteins. Rapid actions include modification of pro-
tein phosphorylation and levels of intracellular second
messengers such as cyclic adenosine monophosphate
or calcium. Figure 1 and Table 1 provide information
on studies that describe the main signaling pathways
by which estrogen affects physiological changes to
reduce IBL.

Despite solid experimental evidence that E2 is
neuroprotective in stroke, some investigators have
found no effect or even detrimental effects of E2 in
experimental ischemia. Such findings may be related
to the dose of E2 used, since neuroprotection may be
lost or detrimental effects may occur at higher
doses.***” E2 may also be less beneficial with increased
severity of injury, e.g., prolonged or permanent vessel
occlusion as opposed to transient occlusion.*** In
some models of comorbidity, such as diabetes, E2
increases infarct size*® and postischemic inflamma-
tion.***> Some of these effects may be model-related.
A recent study found that E2 replacement reduced
infarct size as well as systemic and brain inflammation
only if it was initiated immediately after ovariectomy,
but not after a prolonged period of hypoestrogenic-
ity.** The mechanisms behind this dichotomy are
unclear, but may be related to an inability to upregu-
late the expression of ERs in response to ischemia that
was seen in animals exposed to prolonged hypoestro-
genicity.*® Other effects of ovariectomy besides the
removal of endogenous sex hormones, such as reac-
tive upregulation of pituitary hormones, may also
account for some of the findings in animal studies.
Unfortunately, this question has not been addressed.
Age may also be a confounding factor, as ERalpha
expression increases in reproductively senescent fe-
males.*” Overall, while most experimental data sup-
port a beneficial effect of E2 in IBI, the dissenting
findings emphasize that E2-mediated neuroprotection
may depend on the specifics of the experimental and
clinical situation. More work is clearly needed to
define the circumstances under which E2 can be
expected to show its full neuroprotective potential.

Progesterone and IBI: What We Know From the Bench
Fewer studies have focused on the effects of pro-
gesterone, the “other” female hormone, on IBI. Most
reports identify beneficial effects of progesterone and
its metabolite, allopregnanolone, in a variety of experi-
mental injury models, including focal and global ce-
rebral ischemia. Both cell survival, assessed as lesion
volume,*®* or neuronal density,” > as well as func-
tional neurologic outcome*~*° are improved by
acute or chronic progesterone treatment in male®® and
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Figure 1. Relevant estrogen signaling pathways in ischemic brain injury.

Table 1. Summary of Potential Estrogenic Mechanisms of
Neuroprotection in Ischemic Brain Injury

Proposed mechanism Reference
Preservation of intraischemic blood flow 7
Improvement of postischemic reperfusion 18
Stabilization of blood-brain barrier 171
Reduction of cerebral edema 20
Antioxidant activity 28,172
Amelioration of excitotoxicity 32,173
Up-regulation of cell-survival mediators 25,26,174
Increase of neurite outgrowth and spine 175,176

density
Increase of neurotrophic factors 177
Reduction of leukocyte adhesion after 178
transient global ischemia
Suppression of microglial activation 179
Reduction of reactive gliosis 180
Increase of neuronal stem cell proliferation 33,181

female” animals. However, Murphy et al. reported
that chronic progesterone treatment is associated with
exacerbated striatal injury after focal ischemia in
ovariectomized rats.””

After brain injury and ischemia, progesterone
stimulates protective pathways that suppress inflam-
matory response,”® "’ i.e., reduce expression of proin-
flammatory cytokines and decrease post-stroke edema®®;
but the exact molecular mechanisms involved remain
unclear. We know that progesterone, but not allopreg-
nanolone, binds to the progesterone receptor, sigma
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receptors, and the putative membrane progesterone
binding site,®"**> which may be important steps in the
neuroprotective pathways. Finally, both allopreg-
nanolone and progesterone activate y-aminobutyric
acid-A (GABA ,) receptors, protecting neurons from in
vitro ischemia.®®

Female Sex Steroids in IBI: Clinical Trials and
Implications for the Anesthesiologist and Intensivist

Despite the abundant epidemiologic and experi-
mental data that support the beneficial effects of
female sex hormones in brain injury, and specifically
cerebral ischemia, no clinical studies have substanti-
ated any benefit of estrogen or progesterone treatment
in the context of stroke. Neither have estrogen nor
progesterone been studied clinically as an acute treat-
ment for perioperative brain injury, although experi-
mental data suggest that they may reduce injury and
improve outcome. Since side effects of an acute, likely
single-dose, treatment regimen are expected to be
limited in both men and women, clinical trials appear
to be warranted.

Much of the recent interest in clinical trials has
focused on long-term, chronic female hormone treat-
ment, i.e., hormone replacement therapy (HRT). Large
studies, including the National Institute of Health-
sponsored Women's Health Initiative, have linked HRT
to increased risk for incidental stroke. The Women’s
Health Initiative studied two parallel groups: women
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after hysterectomy were randomized to receive either
conjugated equine estrogen or placebo, and women
with an intact uterus were randomized to receive
combined estrogen and progestin or placebo.®* Quite
unexpectedly, in light of the epidemiologic data sup-
porting a reduced incidence of stroke in premeno-
pausal women, initial results from the Women’s
Health Initiative showed an increased risk for first-
time stroke in both groups of otherwise healthy post-
menopausal women®’; and the study was terminated
prematurely. E2’s hormonally inactive optical isomer,
17«-estradiol, was tested in a phase I clinical study
and was determined to be safe for human use.®
However, data supporting an actual neuroprotective
effect in humans are currently lacking.

Are there any clinical implications, then, for the
anesthesiologist and intensivist? Despite the over-
whelming experimental evidence for the neuroprotec-
tive effects of female sex steroids in IBI, there is an
alarming paucity of clinical data. Consequently, there
are currently no recommendations for the use of acute
estrogen or progesterone treatment to afford protec-
tion in perioperative brain injury. Furthermore, no
clinical studies have attempted to define gender differ-
ences in anesthetic neuroprotection. Although years of
laboratory research have convinced most anesthesia
providers that commonly used anesthetic drugs are
more or less potent neuroprotectants,®”%® all of the
relevant research was performed exclusively in males.
It is unclear at this time if females enjoy the same level
of protection by anesthetics. Recent work on anes-
thetic preconditioning has shown, however, that
isoflurane does not induce tolerance to experimental
stroke in gonadally intact female rodents as it does in
intact males; and, in fact, females sustain greater
damage.®® Neuroprotection by the anesthetic drugs
isoflurane and xenon involves activation of Akt*’ or
CREB,” neuroprotective mediators that can also be
activated by E2. Surprisingly, however, Kitano et al.
also found that while isoflurane preconditioning in-
duced Akt activation in brains of male mice, this was
not the case in females.®® In the context of anesthetic
preconditioning, E2 therefore may prevent rather than
induce the activation of neuroprotective pathways.
More definitive studies on this phenomenon are ur-
gently needed to ensure optimal safety when devel-
oping an anesthesia plan and choosing the anesthetic
drug, particularly, for female patients at risk for
perioperative stroke.

In light of the adverse findings of the recent HRT
trials and the complete lack of clinical studies on the
effects of gender and sex hormones on perioperative
IBI, many questions that are crucial to the routine and
safe practice of anesthesiology and critical care have to
remain unanswered at this time. Should anesthesia
providers concerned about perioperative ischemia be
more inquisitive about the hormone status of their
female patients? Should we possibly try to manipulate
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this status to include recommendations at preanesthe-
sia visits to continue or stop HRT and contraceptives?
Clinical evidence for the effects of endogenous hor-
mones on perioperative IBI is abysmal; and there are
no relevant clinical trials. Experimentally, infarct size
after focal ischemia is inversely related to the levels of
circulating estrogen in normal cycling female rats.”*
Although this suggests that elective high-risk surgery
may be “safer” for the brain on days when endogenous
estrogen levels are high, is this sufficient evidence to
recommend scheduling such surgery according to the
menstrual cycle of the premenopausal patient? Until
we have more clinical data, most providers will likely
answer this question in the negative, but more work is
clearly needed to develop clinical evidence. Some
have suggested discontinuing HRT and contracep-
tives prior to elective surgery to reduce the risk of
perioperative thrombosis.”> Will this practice, how-
ever, put the brain at higher risk in the case of
perioperative ischemia? Should recommendations be
based on the perceived risk of the planned surgery? If
so, what data would we use to establish the relative
risk of perioperative thrombosis versus stroke? Simi-
larly, should HRT be continued in the intensive care
unit (ICU) after stroke or traumatic brain injury (TBI)?
Although outpatient cardiac medications will almost
certainly be continued, hormones are more likely to be
discontinued, since they tend to be viewed as unim-
portant or even dangerous due to their thrombogenic
potential. What are the effects of acute hormone
withdrawal on brain injury and outcome? Consider-
ing that E2 suppresses inflammation after brain injury,
should optimal levels be maintained in these critically
injured patients, and what are optimal levels? All of
these questions are admittedly pointed and provoca-
tive, and they are far from being answered defini-
tively. Nevertheless, they may help to emphasize the
gap between experimental data and clinical trials that
needs to be narrowed before clinical practice can
change. Hopefully, they will also raise awareness
among anesthesia providers of the relevance that
gender and sex hormones may have in the perioper-
ative period.

TRAUMATIC BRAIN INJURY
Sex Differences and Neuroendocrine Abnormalities

TBI is a major cause of death and disability world-
wide and is the leading cause of death between the
ages of 15 and 44 yrs. Head injuries account for the
majority of all trauma-related deaths; and at least 6.2
million people in Europe and 5.3 million in the United
States live with disability, impairment, or handicap
from TBL”?

Young adult males are at highest risk for TBI, but
the male/female incidence ratio reaches 1:1 at age 65
yrs.”* The strong relationship between age and TBI
outcome has been demonstrated in numerous prog-
nostic studies. Results from an IMPACT (International
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Mission on Prognosis and Analysis of Clinical Trials)
study of TBI confirm the previously described direct
association between age and volume of the lesion,
particularly in acute subdural hematomas.”* This ob-
servation has direct consequences for health care
planning due to increasing age of the population and
increasing incidence of TBI in the elderly.”*"®

Reports on gender-related differences in outcome
after TBI have raised interest in hormonal influences
and generated research into neuroprotective effects of
estrogen, progesterone, and testosterone. Women
were sometimes excluded from early studies due to
concerns regarding effects on fecundity and the influ-
ence of hormonal fluctuation on drug pharmacokinet-
ics. More recent studies indicate poorer TBI outcome
in females,””®" whereas only a few investigators re-
port a better outcome.®” In a prospective study of
severely and moderately brain-injured individuals,
Kraus et al. found that females were 1.75 times more
likely to die of their brain injury than males and were
1.57 times more likely to experience poor outcomes,
i.e., severe disability or persistent vegetative state.®*
Mushkudiani et al. used data from an IMPACT study
to describe and quantify the prognostic value of
demographic characteristics, including gender, on six-
month TBI outcomes assessed by the Glasgow Out-
come Scale.”* They extracted individual patient data
based on age (n = 8719), gender (n = 8720), race (n =
5320), and education (n = 2201) from eight therapeutic
phase III randomized clinical trials and three surveys
involving moderate or severe TBI. Analysis demon-
strated a reciprocal relationship between outcome and
increasing age, but no correlation between gender and
outcome was found in this study. The investigators
concluded, therefore, that outcome after TBI is depen-
dent on age, race, and, to a lesser extent, on education,
but not on gender.

Despite a lack of consistent clinical data regarding
gender differences in TBI, a growing body of evidence
from laboratory and clinical research supports the
influential role of sex hormones in injured brain.
Several studies have also focused on gender-specific
changes associated with TBI. Reproductive function,
for example, is downregulated in episodes of severe
illness, including TBIL.*** Hypopituitarism often oc-
curs in the post-acute phase of TBI and may normalize
later; however, it may also develop after the post-
acute phase. Schneider et al., described the prevalence
of anterior pituitary insufficiency at 3 mo (56% of all
patients) and 12 mo (36% of all patients) after TBI. At
3 mo, the extent of hypogonadism was directly pro-
portional to the severity of disease.** At 12 mo,
however, the clinical improvement noted was signifi-
cantly less marked in male patients, due possibly to
low testosterone levels or greater severity of disease.
In fact, a decline in testosterone that is dependent on
the severity of the injury and is also reversible has
been reported in studies of the early phase after
TBI*® Agha et al. evaluated the prevalence of anterior
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and posterior pituitary dysfunction in the early phase
after TBL* Eighty percent of patients had gonadotropin
deficiency. In males, there was a direct correlation be-
tween serum testosterone concentration and Glasgow
Coma Scale assessment. Similarly, Dimopoulou et al.
found that 53% of their TBI patients had an abnormal
result in at least one hormonal axis tested during the
early recovery period, and cortisol hyporesponsive-
ness and gonadal dysfunction were equally common
in males and females.” Interestingly, these endocrine
abnormalities were associated with a higher brain
computed tomography scan classification score.

In summary, we recommend that neuroendocrine
abnormalities be assessed more carefully after TBI
since they may have significant implications for recov-
ery and rehabilitation. To confirm that sex steroids
mediate gender differences in TBI outcome, more
clinical studies are needed; however, there is already
sufficient evidence to warrant considering restoration
of gonadotropin levels in practice. For example, male
TBI patients in the ICU or the operating room could
benefit not only from restoring their testosterone
levels, especially in the early phase, but also from
monitoring these levels long-term for at least 3 mo or
even 12 mo. Other studies suggest that progesterone
treatment may improve outcomes for men and
women.

Progesterone and TBI: What We Know From the Bench

The influence of sex steroids in trauma-induced
brain damage was first considered with the observa-
tion that females develop less edema® and sustain
reduced cortical contusions compared with males.”
Focus then centered around progesterone because
edema is virtually absent in states of hyperprogester-
onemia in females.”’*® Progesterone is present in
small but approximately equal concentrations in male
and female brain, and progesterone receptors are
widely distributed throughout the central nervous
system.”*

Research studies in animal models of TBI confirm
the neuroprotective effects of progesterone (Table 2).
Progesterone is beneficial in ischemic as well as trau-
matic brain injury (Fig. 2). In fact, at comparable doses,
progesterone yields effects that are reproducible
across species and types of brain injury. In 2003, Goss
et al. published a dose-response study demonstrating
that 8—16 mg progesterone/kg body weight is optimal
to promote cognitive recovery after TBL”> More re-
cently, Sayeed et al. found that allopregnanolone is
even more effective in facilitating central nervous
system repair.>?

Method of delivery also affects the efficacy of
progesterone. The pharmacokinetics of progesterone
indicates that the half-life of this neurosteroid in
serum is approximately 15 min, and it is fully metabo-
lized by 24 h.”*® This results in a spiking effect that
is attenuated by subcutaneous delivery, as the bolus of
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Table 2. Neuroprotective Effects of Progesterone in Traumatic Brain Injury (TBI): A Summary of Laboratory Findings

Species/gender/model Proposed mechanism Reference

Rat/male (M), female (F)/TBI Reconstitutes blood—brain barrier, reduces brain 182

swelling in M,F
Rat/M,F/TBI Reduces vasogenic and cytotoxic edema in M,F 182
Rat/M,F/TBI Reduces edema when treatment is delayed 24 hr in M,F 117
Rat/M,F/TBI Reduces brain water content in M,F 91,182,183
Rat/M,F/TBI Improves motor performance in F 183
Rat/M/TBI Reduces lipid peroxidation 184
Rat/hippocampal neurons Reduces free radical formation 185
Rat/F/brain homogenate Reduces lipid peroxidation 186
Rat/primary cortical neurons = Reduces lipid peroxidation 29

Hippocampal HT22 cells
human brain homogenates
Human/M,F/TBI Decreases isoprostane levels in F 80
Rat/M/TBI (prefrontal injury) Reduces proapoptotic, increases antiapoptotic enzymes 187
Rat/M/TBI Reduces expression of proinflammatory genes 188
Rat/F/TBI Protects thermoregulation 189
Rat/M/TBI Enhances functional recovery 95
Mice/M,F/TBI Improved performance in M 190
Rat/M,F/T Improved motor performance in F 183
Rat/F/progesterone withdrawal Increased anxiety 108
Impacts on BBB (Blood Brain Barrier):

* Crosses easily 1112)

* Reduces BEB parmeability in vivo (51)

* Regulates waler exchange, reduces swelling (51)

* Reconstitutes BBB [168)

: Tan / :
PROGESTERONE :D (Tsrnp-el‘a ure regulation ) Reduces cytoloxic and vasogenic
{175) brain edema {109,114,168)

\

Increases: Reduces:
* Oligodendrecyte induced
remyelination (110,111}

* Anitapoptotic enzymes (173)

* Lipid peroxidation (170
* Free radical formation (28,170-172)
* Proapoptotic enzymes (173)

’ Expressior of proinflammatory genes (174)
* Vasoconstrictive prostaglanding (81)
* Meuronal degamaration and pratacts distant neurons (168)

* Facilitates CNS repair (53)

* Improves functional recovery {168)
* Promotes cognitive recovery (B1)
* Improves cognitive. sensory, and spatial learning (168}

Figure 2. Progesterone effects in ischemic and traumatic brain injury.

drug seeps into tissues at a slower rate.”'°! Cutler et
al. demonstrated that, in a rat model of TBI, continu-
ous progesterone release treatment is more beneficial
than daily subcutaneous bolus injections over the
same period of time.'”> Treatment is optimized by
delivering a continuous infusion of progesterone over
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5 days, and the adverse effects of acute progesterone
withdrawal are reduced with gradual tapering by 1
week postinjury. In contrast to tapered withdrawal,
acute progesterone withdrawal is characterized by
increased apoptosis, inflammation, and anxiety be-
haviors during the acute recovery phase after TBI.

ANESTHESIA & ANALGESIA



acute progesterone withdrawal occurs when the link-
age between allopregnanolone and receptors that
activate GABA is suddenly terminated, causing an
upregulation of NMDA and sigma receptor binding,
which, in turn, leads to increased anxiety, depression,
and seizure susceptibility.'®% Furthermore, con-
tinuous progesterone infusion provides a model better
suited to inform clinical trials for progesterone use
after TBI.

In summary, laboratory results indicate that, in
males and females, progesterone treatment after TBI
dramatically reduces edema'” and subsequent neuro-
nal degeneration,''”!"" restores the integrity of the
blood-brain barrier,''? and improves spatial learning
performance. Clinical findings substantiate benefits of
progesterone treatment.

Progesterone and TBI: Clinical Trials and Implications for
the Anesthesiologist and Intensivist

Progesterone is an attractive candidate for the treat-
ment of TBI because it is lipid soluble and can,
therefore, rapidly cross the blood—-brain barrier, reach-
ing equilibrium with plasma within an hour of admin-
istration.''® It also has a long history of safe use in men
and women.''* Although the neuroprotective potency
of progesterone has been successfully studied in the
laboratory, it is extremely difficult to translate its
efficacy into clinical benefits.”?> Outcome after TBI
depends not only on the nature and severity of the
injury and the subsequent treatment, but also on the
unique, constituent characteristics of each individual
patient. For example, Farin et al. studied males and
females with severe head injury and described greater
susceptibility to brain swelling in females 50-yrs-of-
age and younger, with a possible benefit from more
aggressive monitoring and treatment of intracranial
hypertension in this group.''® They postulated that
higher levels of estrogen relative to progesterone in
these patients may be responsible for this sensitivity.

In 2005, Wright et al. reported that IV progesterone
could be administered in effective doses via a periph-
eral line to adult victims of acute TBL.''® Their formu-
lation, which is now widely available in inexpensive,
generic forms, was used in ProTECT, a clinical trial to
assess the safety and potential benefit of administering
progesterone to patients with acute TBIL. In 2007,
Wright et al. reported the results of this phase II,
randomized, double-blind, placebo-controlled trial,
conducted at an urban Level I trauma center.”* One
hundred adult trauma patients who arrived within
11 h of injury with a post-resuscitation Glasgow Coma
Scale score of 4 to 12 were enrolled in this trial with
proxy consent. Seventy-seven patients received pro-
gesterone, and 23 received placebo. The groups had
similar demographic, clinical, and laboratory charac-
teristics. Results showed that the 30-day mortality rate
in the progesterone group was lower than in the
control group. Furthermore, survivors of moderate
TBI who received progesterone were more likely to

Vol. 107, No. 1, July 2008

have a moderate to good outcome than those random-
ized to placebo. Although no significant differences
were observed between treatment and control patients
in mean intracranial pressure or in the relationship of
intracranial pressure to therapeutic intensity levels,
this study lacked sufficient power to assess the effects
of progesterone on intracranial pressure.”

The Wright et al. study concluded that progester-
one caused no discernible harm and may be a benefi-
cial treatment for TBI. The investigators speculated,
however, that proxy consent delayed initiation of
treatment by several hours. One study of TBI in an
animal model suggests that progesterone may yield
favorable effects as late as 24 h postinjury, but the
benefit is greatest if treatment is administered within
2 h."'” Early initiation of treatment, perhaps through
exception to informed consent, would maximize po-
tential therapeutic benefits and should be considered
for future clinical trials of this agent.”* A larger trial
involving multiple clinical sites, randomization 1:1,
and rapid initiation of treatment is still warranted.

In summary, noninvasive progesterone treatment is
potentially beneficial for improving functional and
cognitive recovery in TBI patients. It may also help to
prevent and treat intracranial hypertension, although
drug interactions with mannitol and other therapeu-
tics must be addressed. Progesterone, unlike estrogen,
can be administered to both genders without signifi-
cant side effects. Ease of delivery and a relatively large
window of opportunity also make progesterone very
attractive. Although the clinical data may not be
complete, anesthesiologists and intensivists can still
consider using this neurosteroid in the ICU and the
operating room, especially in the early phase of TBI
Special attention should be paid to women receiving
contraceptives and HRT. If HRT is discontinued, the
sudden decrease in progesterone and/or estrogen
levels may negatively impact TBI outcome and can
even cause acute withdrawal; therefore, continuation
of hormonal treatment in the ICU and operating room
may be beneficial and may also prevent withdrawal
symptoms. Furthermore, TBI in pregnancy remains
largely unexplored, but hyperprogesteronemia re-
duces brain edema.”"*?

Epilepsy and Gender

Many epidemiologic studies suggest sex differences
in the incidence of epilepsy. These differences appear
to be closely linked to the type of seizure disorder.
Overall epilepsy incidence may be higher in males,"'**
but women are more likely to suffer from idiopathic
generalized epilepsy'**'*! or absence seizures.''® Be-
cause the menstrual cycle influences the occurrence of
complex partial seizures involving the limbic sys-
tem'* %" and menopause largely eclipses gender
differences in epilepsy incidence, sex steroids appear
to play a significant role in these underlying disease
processes.’®® In fact, increased seizure incidence is
associated with low estrogen and low progesterone
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phases and with the follicular phase when plasma
estradiol sharply increases; however, seizure activity
decreases when progesterone is high relative to estro-
gen.”® Experimental studies in animal models confirm
these clinical findings.'** "%

Such observations form the basis for hormone treat-
ment of epilepsy. Progesterone is used to treat women
with catamenial epilepsy.'?*12412613L136-138 prooeg
terone treatment also reduces limbic seizures in a
variety of experimental models;'**"**'% however, its
beneficial effects are observed only at low physiological
levels.'*! Progesterone’s anti-epileptic mechanisms
likely involve GABA, receptor modulation.'**™*° In
contrast, estrogen can increase seizure potential in
animals, but it may also provide some protection
against neuronal injury from seizure.'**'*” These neu-
roprotective effects are dependent on a number of
variables, including 1) treatment duration, 2) latency
before seizure testing, 3) mode of administration, 4)
estrogen dose and hormonal status, 5) estrogenic
species, 6) the region/neurotransmitter system in-
volved, 7) seizure type/model used, and 8) sex.

Care should be taken, however, when prescribing
hormone therapy for women with epilepsy; and the
decision to continue or discontinue contraceptives, HRT,
or other hormone preparations during the perioperative
period should be made with special consideration in
these patients. Conjugated equine estrogens, such as
Premarin, for example, can be epileptogenic***'* and do
not contain 178-estradiol, well-documented for its neu-
roprotective properties (see Ischemic Brain Injury, this
article). Further studies are necessary to gather the
evidence required to direct prescription of hormonal
preparations that may affect both seizure control and
prevention of seizure-induced neuronal damage.

The Male Side of the Story: Androgens and Brain Injury

Less is known about male sex steroids and brain
injury. This is due in part to poor agreement about
“normal” levels of androgens in men over their life-
span. Testosterone cycles diurnally, declines progres-
sively with age (andropause), and decreases rapidly in
response to stress and illness;'””'”' however, no
widely accepted normal range for serum testosterone
is established for aging men, and many studies have
simply applied cutoff values that are defined for
young adult men.'>*> Furthermore, the significance of
the andropause to men’s health is unclear.

Emerging data from laboratory studies suggest that
testosterone and its potent metabolite, dihydrotestos-
terone, are important factors in the male response to
cerebral ischemia and trauma. Male animals sustain
larger ischemic damage compared with age-matched
females for a comparable insult, suggesting a male
“ischemia-sensitive” phenotype. In male rats, andro-
gen replacement in castrates increases histological
damage from stroke,'®'**!>* whereas, stressors, such
as halothane anesthesia, administered before an epi-
sode of cerebral ischemia reduce testosterone levels,
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resulting in a 50% reduction in brain damage.'>®
Furthermore, testosterone replacement after stroke
accelerates functional recovery in castrated rats.'>
One interpretation of this interesting paradox is that
testosterone has deleterious effects in the case of acute
stroke but is beneficial during the recovery phase.
Beneficial effects of androgens after peripheral nerve
damage or brain trauma have also been reported in
animals,"” "' in part via interaction with glial
elements, 156160162

Several small-scale studies of the andropause sug-
gest that loss of testicular and adrenal androgens has
a negative impact on cognition and memory'®'* and
contributes to the well-recognized loss of muscle
function and bone density. More directly relevant to
perioperative complications, decreased testosterone
levels have been associated with poor outcome after
acute ischemic events.'®® Androgen levels are in-
versely associated with stroke severity, infarct size,
and 6-month mortality; and total and free testosterone
levels tend to normalize within 6 mo after stroke.
These data do not necessarily suggest a direct causal
relationship because brain injury provokes an acute
stress reaction that causes a reduction in plasma
testosterone. However, stress-induced acute reduction
of androgens could be relevant to progression of stroke
damage, eg., by decreasing fibrinolytic activity,"”*®
which would delay lysis of a preformed thrombus.
Under normal physiological conditions, androgens
inhibit arterial thrombosis;'®® however, their role in
vascular disease has not been well studied. Potential
mechanisms by which androgens could enhance post-
stroke recovery include normalization of reperfusion,
promotion of axonal regeneration, synaptogenesis,
and neurogenesis.'”

Most of these observations come from anecdotal or
small-scale clinical studies. Nevertheless, evaluation
of the andropause with its gradual loss of male sex
steroid production is gaining importance to the new
area of men’s health. The importance of androgens to
anesthetic mechanisms or to perioperative complica-
tions remains an uncharted territory. However, new
findings could have broad applications to men with
brain injury from stroke or reperfusion injury after
invasive neurosurgical procedures.

CONCLUSIONS

Biologic sex and sex steroids are important factors
in clinical and experimental brain injury and in epi-
lepsy. Estrogen and, to a lesser degree progesterone,
have accumulated an impressive reputation as neuro-
protectants in physiologically relevant doses in labo-
ratory studies, but there are large gaps between
experimental data and the application to women. Data
surrounding TBI are more clear. Laboratory data
strongly show that progesterone treatment after TBI
reduces edema, improves outcomes and restores
blood-brain barrier function. Clinical studies agree
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with these data, and there are continuing human trials
for progesterone treatment after TBI. The question of
why the male brain is more sensitive to some types of
brain injury is an active area of research; however,
androgenic effects remain largely evaluated at the
bench rather than the bedside.

Despite considerable evidence emphasizing that
sex differences, sex steroids and pharmacological hor-
mones can alter outcome from brain injury, the implica-
tions for perioperative management are only beginning to
be scrutinized. Although anesthetics are often thought
to be neuroprotective in their own right, we know
relatively little about interactions between anesthetics
and sex steroids. In part, this is because preclinical
studies are largely conducted in male animals. Further
evidence can easily be gathered to direct the use and
withdrawal of sex steroids in patients with neurovas-
cular risk factors and seizures. Hopefully, this review
will raise awareness among anesthesiologists and in-
tensivists to the presence of clinically relevant gender
differences in brain injury and to the relevance that sex
hormones may have in the perioperative patient.
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